In 1801, Joseph-Marie Jacquard developed a loom in which the pattern being woven was controlled by punched cards. The series of cards could be changed without changing the mechanical design of the loom. This was a landmark achievement in programmability.
In 1833, Charles Babbage moved on from developing his difference engine (for navigational calculations) to a general purpose design, the Analytical Engine, which drew directly on Jacquard's punched cards for its program storage.In 1835, Babbage described his analytical engine. It was a general-purpose programmable computer, employing punch cards for input and a steam engine for power, using the positions of gears and shafts to represent numbers. His initial idea was to use punch-cards to control a machine that could calculate and print logarithmic tables with huge precision (a special purpose machine). Babbage's idea soon developed into a general-purpose programmable computer. While his design was sound and the plans were probably correct, or at least debuggable, the project was slowed by various problems including disputes with the chief machinist building parts for it. Babbage was a difficult man to work with and argued with everyone. All the parts for his machine had to be made by hand. Small errors in each item might sometimes sum to cause large discrepancies. In a machine with thousands of parts, which required these parts to be much better than the usual tolerances needed at the time, this was a major problem. The project dissolved in disputes with the artisan who built parts and ended with the decision of the British Government to cease funding. Ada Lovelace, Lord Byron's daughter, translated and added notes to the "Sketch of the Analytical Engine" by Federico Luigi, Conte Menabrea. This appears to be the first published description of programming.IBM 407 tabulating machine, (1961)
A reconstruction of the Difference Engine II, an earlier, more limited design, has been operational since 1991 at the London Science Museum. With a few trivial changes, it works exactly as Babbage designed it and shows that Babbage's design ideas were correct, merely too far ahead of his time. The museum used computer-controlled machine tools to construct the necessary parts, using tolerances a good machinist of the period would have been able to achieve. Babbage's failure to complete the analytical engine can be chiefly attributed to difficulties not only of politics and financing, but also to his desire to develop an increasingly sophisticated computer and to move ahead faster than anyone else could follow.
Following Babbage, although unaware of his earlier work, was Percy Ludgate, an accountant from Dublin, Ireland. He independently designed a programmable mechanical computer, which he described in a work that was published in 1909.
In the late 1880s, the American Herman Hollerith invented data storage on a medium that could then be read by a machine. Prior uses of machine readable media had been for control (automatons such as piano rolls or looms), not data. "After some initial trials with paper tape, he settled on punched cards..."Hollerith came to use punched cards after observing how railroad conductors encoded personal characteristics of each passenger with punches on their tickets. To process these punched cards he invented the tabulator, and the key punch machine. These three inventions were the foundation of the modern information processing industry. His machines used mechanical relays (and solenoids) to increment mechanical counters. Hollerith's method was used in the 1890 United States Census and the completed results were "... finished months ahead of schedule and far under budget".[25] Indeed years faster than the prior census had required. Hollerith's company eventually became the core of IBM. IBM developed punch card technology into a powerful tool for business data-processing and produced an extensive line of unit record equipment. By 1950, the IBM card had become ubiquitous in industry and government. The warning printed on most cards intended for circulation as documents (checks, for example), "Do not fold, spindle or mutilate," became a catch phrase for the post-World War II era.[26]
Punched card with the extended alphabet
Leslie Comrie's articles on punched card methods and W.J. Eckert's publication of Punched Card Methods in Scientific Computation in 1940, described punch card techniques sufficiently advanced to solve some differential equations[27] or perform multiplication and division using floating point representations, all on punched cards and unit record machines. Those same machines had been used during WWII for cryptographic statistical processing. In the image of the tabulator (see left), note the patch panel, which is visible on the right side of the tabulator. A row of toggle switches is above the patch panel. The Thomas J. Watson Astronomical Computing Bureau, Columbia University performed astronomical calculations representing the state of the art in computin
Computer programming in the punch card era was centered in the "computer center". Computer users, for example science and engineering students at universities, would submit their programming assignments to their local computer center in the form of a stack of punched cards, one card per program line. They then had to wait for the program to be read in, queued for processing, compiled, and executed. In due course, a printout of any results, marked with the submitter's identification, would be placed in an output tray, typically in the computer center lobby. In many cases these results would be only a series of error messages, requiring yet another edit-punch-compile-run cycle. Punched cards are still used and manufactured to this day, and their distinctive dimensions (and 80-column capacity) can still be recognized in forms, records, and programs around the world. They are the size of American paper currency in Hollerith's time, a choice he made because there was already equipment available to handle bills.
In 1833, Charles Babbage moved on from developing his difference engine (for navigational calculations) to a general purpose design, the Analytical Engine, which drew directly on Jacquard's punched cards for its program storage.In 1835, Babbage described his analytical engine. It was a general-purpose programmable computer, employing punch cards for input and a steam engine for power, using the positions of gears and shafts to represent numbers. His initial idea was to use punch-cards to control a machine that could calculate and print logarithmic tables with huge precision (a special purpose machine). Babbage's idea soon developed into a general-purpose programmable computer. While his design was sound and the plans were probably correct, or at least debuggable, the project was slowed by various problems including disputes with the chief machinist building parts for it. Babbage was a difficult man to work with and argued with everyone. All the parts for his machine had to be made by hand. Small errors in each item might sometimes sum to cause large discrepancies. In a machine with thousands of parts, which required these parts to be much better than the usual tolerances needed at the time, this was a major problem. The project dissolved in disputes with the artisan who built parts and ended with the decision of the British Government to cease funding. Ada Lovelace, Lord Byron's daughter, translated and added notes to the "Sketch of the Analytical Engine" by Federico Luigi, Conte Menabrea. This appears to be the first published description of programming.IBM 407 tabulating machine, (1961)
A reconstruction of the Difference Engine II, an earlier, more limited design, has been operational since 1991 at the London Science Museum. With a few trivial changes, it works exactly as Babbage designed it and shows that Babbage's design ideas were correct, merely too far ahead of his time. The museum used computer-controlled machine tools to construct the necessary parts, using tolerances a good machinist of the period would have been able to achieve. Babbage's failure to complete the analytical engine can be chiefly attributed to difficulties not only of politics and financing, but also to his desire to develop an increasingly sophisticated computer and to move ahead faster than anyone else could follow.
Following Babbage, although unaware of his earlier work, was Percy Ludgate, an accountant from Dublin, Ireland. He independently designed a programmable mechanical computer, which he described in a work that was published in 1909.
In the late 1880s, the American Herman Hollerith invented data storage on a medium that could then be read by a machine. Prior uses of machine readable media had been for control (automatons such as piano rolls or looms), not data. "After some initial trials with paper tape, he settled on punched cards..."Hollerith came to use punched cards after observing how railroad conductors encoded personal characteristics of each passenger with punches on their tickets. To process these punched cards he invented the tabulator, and the key punch machine. These three inventions were the foundation of the modern information processing industry. His machines used mechanical relays (and solenoids) to increment mechanical counters. Hollerith's method was used in the 1890 United States Census and the completed results were "... finished months ahead of schedule and far under budget".[25] Indeed years faster than the prior census had required. Hollerith's company eventually became the core of IBM. IBM developed punch card technology into a powerful tool for business data-processing and produced an extensive line of unit record equipment. By 1950, the IBM card had become ubiquitous in industry and government. The warning printed on most cards intended for circulation as documents (checks, for example), "Do not fold, spindle or mutilate," became a catch phrase for the post-World War II era.[26]
Punched card with the extended alphabet
Leslie Comrie's articles on punched card methods and W.J. Eckert's publication of Punched Card Methods in Scientific Computation in 1940, described punch card techniques sufficiently advanced to solve some differential equations[27] or perform multiplication and division using floating point representations, all on punched cards and unit record machines. Those same machines had been used during WWII for cryptographic statistical processing. In the image of the tabulator (see left), note the patch panel, which is visible on the right side of the tabulator. A row of toggle switches is above the patch panel. The Thomas J. Watson Astronomical Computing Bureau, Columbia University performed astronomical calculations representing the state of the art in computin
Computer programming in the punch card era was centered in the "computer center". Computer users, for example science and engineering students at universities, would submit their programming assignments to their local computer center in the form of a stack of punched cards, one card per program line. They then had to wait for the program to be read in, queued for processing, compiled, and executed. In due course, a printout of any results, marked with the submitter's identification, would be placed in an output tray, typically in the computer center lobby. In many cases these results would be only a series of error messages, requiring yet another edit-punch-compile-run cycle. Punched cards are still used and manufactured to this day, and their distinctive dimensions (and 80-column capacity) can still be recognized in forms, records, and programs around the world. They are the size of American paper currency in Hollerith's time, a choice he made because there was already equipment available to handle bills.

Comments :
0 komentar to “1801: punched card technology”
Posting Komentar